翻訳と辞書
Words near each other
・ Caratasca Lagoon
・ Carataunas
・ Carate
・ Carate Brianza
・ Carate Urio
・ Caratheodory-π solution
・ Carathis
・ Carathis alayorum
・ Carathis australis
・ Carathis byblis
・ Carathis gortynoides
・ Carathis palpalis
・ Carathis septentrionalis
・ Carathéodory conjecture
・ Carathéodory kernel theorem
Carathéodory metric
・ Carathéodory's criterion
・ Carathéodory's existence theorem
・ Carathéodory's extension theorem
・ Carathéodory's theorem
・ Carathéodory's theorem (conformal mapping)
・ Carathéodory's theorem (convex hull)
・ Carathéodory–Jacobi–Lie theorem
・ Caratinga
・ CaratLane
・ Caratoola Recreation Park
・ Caratti
・ Caratunk Falls Archeological District
・ Caratunk, Maine
・ Carau


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Carathéodory metric : ウィキペディア英語版
Carathéodory metric
In mathematics, the Carathéodory metric is a metric defined on the open unit ball of a complex Banach space that has many similar properties to the Poincaré metric of hyperbolic geometry. It is named after the Greek mathematician Constantin Carathéodory.
==Definition==

Let (''X'', || ||) be a complex Banach space and let ''B'' be the open unit ball in ''X''. Let Δ denote the open unit disc in the complex plane C, thought of as the Poincaré disc model for 2-dimensional real/1-dimensional complex hyperbolic geometry. Let the Poincaré metric ''ρ'' on Δ be given by
:\rho (a, b) = \tanh^ \frac
(thus fixing the curvature to be −4). Then the Carathéodory metric ''d'' on ''B'' is defined by
:d (x, y) = \sup \.
What it means for a function on a Banach space to be holomorphic is defined in the article on Infinite dimensional holomorphy.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Carathéodory metric」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.