翻訳と辞書 |
Carathéodory metric : ウィキペディア英語版 | Carathéodory metric In mathematics, the Carathéodory metric is a metric defined on the open unit ball of a complex Banach space that has many similar properties to the Poincaré metric of hyperbolic geometry. It is named after the Greek mathematician Constantin Carathéodory. ==Definition==
Let (''X'', || ||) be a complex Banach space and let ''B'' be the open unit ball in ''X''. Let Δ denote the open unit disc in the complex plane C, thought of as the Poincaré disc model for 2-dimensional real/1-dimensional complex hyperbolic geometry. Let the Poincaré metric ''ρ'' on Δ be given by : (thus fixing the curvature to be −4). Then the Carathéodory metric ''d'' on ''B'' is defined by : What it means for a function on a Banach space to be holomorphic is defined in the article on Infinite dimensional holomorphy.
抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「Carathéodory metric」の詳細全文を読む
スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース |
Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.
|
|